Implementation of YMC3D: 3D Monte Carlo photon transport
in tissue inclusions

Asgeir Bjorgan, Matija Milanic, Lise Lyngsnes Randeberg

May 11, 2015

1 Introduction

This document is meant to detail the implementation of YMC3D, a package for calculating photon
transport in smaller 3D tissue inclusions by employing NVIDIA CUDA technology. The package is
presented and tested against comparable Monte Carlo packages in Bjorgan et al. [2].

2 Usage

YMC3D is run using
./YMC3D [geometry file] [tissue file] [output base filename].

Output is currently limited to [output] drs.bin, which contains the spatially resolved diffuse re-
flectance. There are functions available for writing absorption, fluence and beam information.

2.1 Output

Outputs are currently in binary file formats. Format specification in the given order:

e 1 ints (specifies number of dimensions D, either 2 or 3)

e D ints (specifies number of voxels along coordinate direction, N, Ny, N)

e D floats (specifies voxel sizes dx, dy, dz)

e N, - N, - N, floats (specifies output data array, interleaved as z*N_x*N_y + y*N x + x)
Output can be read using the MATLAB/octave function matlab/read /read ymc3d outputfile.m.

2.2 Input

Inputs are tissue data (pq, ps, g, n) and tissue geometry.
Tissue optical property format specification:
e 1 int (specifies the number of different tissue types T)

e 4.T floats (specifies tissue optical properties for each tissue type. Saved as [fiq, 1 M1 g1 M1, fa,2
Hs,2 G2 T2, ..]

Geometry format specifications:

e 1 int (specifies number of dimensions. This will always be 3, but included for compatibility to
output file format.)

e 3 ints (specifies number of voxels along each coordinate direction, N, Ny, N.)
e 3 floats (specifies voxel sizes dz, dy, dx)
e N, -N,-N. ints (specifies tissue voxel geometry. Interleaved as z*N_x*N _y + y*N_ x + x.)

Tissue types are automatically incremented by 1 internally in YMC3D, and 0 is assigned to air. If input
tissue type is set to 255, this is also interpreted as air.

Note that the input/output file format might change in the future. Input/output was implemented
in a similar way to an older 3D Monte Carlo implementation [3] due to ease of inter-compatibility and
comparison. On one hand, binary formats eases input and output, but becomes completely indechifferable
if input /output functions ever change. This is also not neccessarily platform independent.

Examples of generation of tissue properties and geometry specifications are located in matlab/geometry/.

3 Implementation

3.1 Files

List of source files:

e mc3d_gpu.cu/.h: Photon tracking on GPU, photon reinitialization on GPU, kernel control from
CPU.

e mc3d_io.cu/.h: Input/output functions for reading of geometry /tissue properties and writing of
results.

e mc3d _main.cu: main() function, starting point. Specifies parameters, starts simulation, writes
results to file.

e mc3d_photons.cu/.h: Photon structure. Contains detector functions.

e mc3d types.h: Geometry and optical property structures. Specifies general Monte Carlo pa-
rameters (threshold for W, survival chance for Russian roulette, ...)

3.2 Overview

The implementation is based on the basic MCML photon tracking loop presented in [4], but with voxels
instead of layer boundaries. The basic formulas are used (i.e. scattering directions, transmission, reflec-
tion, Russian roulette), albeit modified for consideration of boundaries also in = and y directions. The
random number generator used by Alerstam et al. [I] was found to be suitable.

The implementation is structured around GPU- and CPU-suitable work and concurrent transfer of data
between GPU and host. An overview of the data flow between GPU and the host is shown in figure [I}
Photons are initialized and tracked on the GPU and transferred to the CPU for reflectance recording.

Photons are reinitialized in a separate function from the photon tracker. This eases implementation of
various photon sources without interfering too much with e.g. the available amount of registry, GPU
coalescing or SIMD parallelization in the main photon tracking loop. Detector functions are implemented
on the CPU, where atomic access to double precision arrays is possible without introducing thread
divergence on the GPU.

Photons are tracked for a specified number of steps before they are checked for possible reinitialization.
The simulation time can primarily be tweaked by two parameters: The number of photon steps and the
size of the photon array. Too many photon steps will lead to tracking of photons which have already
been frozen. Too few will lead to too many useless reinitializations and memory copies back to the host.
The number of photons controls the intermediary measure between too much data transfer between host
and GPU and optimal GPU occupancy.

Reinitialize until
started_photons >= num_photons

0 s
Copy photons device to device
(photons -> photons_backup)
|
| 3 Launch CUDA kernels
1o}
photon_reinitialize a Copy photons to host 2
0.5 Lis 3 (photons_backup 2
XU 2 -> host_photons) 5:?
o g
2 3
g
photon_step 3 Detector Reflectance array
X Us

Stop simulation when
finished_photons == started_photons
and started_photons >= num_photons

Figure 1: CUDA concurrency setup. The device properties are copied to a temporary device array
(photon__backup). The photon properties are copied down to the host concurrently with reinitialization
of dead or escaped photons and continued tracking of photons. Escaped host photons are then recorded
in reflectance or transmission arrays.

3.3 Helper functions

List of helper device functions:

e device int getGridCoord(): Get voxel grid coordinate from floating point coordinate,
according to a fixed rule.

e device _ float intersection(): Find next voxel intersection according to direction cosines
and current coordinates, return distance. Move coordinates explicitly to the boundary.

e device _ int getTissueType(): Get tissue type corresponding to voxel coordinates.

e device _ bool mirror(): Modify coordinates according to mirror boundary conditions when
outside the volume of interest.

i-1 i i+1

‘/
i-1 i+1

—~

Figure 2: Calculation of grid coordinates. Photons with a positive direction cosine on a boundary are
counted into the next cell.

Grid coordinates are calculated from the photon coordinates using the floor() operation, thereby always
using the lower grid line as the current grid coordinate along that axis. Coordinates corresponding
exactly to the grid line are treated according to the direction cosine as shown in figure [2]

The intersection algorithm is based on the behavior of the grid coordinate system. A direction cosine
less than zero will always mean that the next potential boundary to cross with a non-zero distance
would be the grid line corresponding to the grid coordinate. A direction cosine larger than or equal to

zero will potentially cross the next grid line (see figure . The intersection with a boundary is found
through a step-wise procedure: the photon is intersected with all potential grid lines. The smallest
intersection parameter is then chosen as the distance to the boundary. The coordinates which have the
primary intersection with a grid line are explicitly moved to the boundary in order to avoid numerical
inaccuracies through multiplication operations. The intersection algorithm is shown in figure [3]

boundary_x
4+,

t x . t x / /

// J+1 . \/_// / newy = boundary_y
7 ! - = - boundary_y & x = x + trux
i-1 i i+1 j
j-1 t = fmaxf(t_x, t_y)

Figure 3: Algorithm for calculating the intersection between a photon and the grid.

The algorithm always chooses the smallest distance. It is therefore important to avoid numerical inaccu-
racies which may lead to the distance to a boundary being zero. Direction cosines less than a threshold
are set exactly to zero in order to avoid e.g. [-0, -0, 1]. This could otherwise lead to ambiguous grid
coordinates resulting in zero distance to the boundary. Direction cosines are renormalized to 1, though
all operations on direction cosines are theoretically guaranteed to still sum to 1.

Tissue voxels are assigned a number corresponding to the type of tissue. The tissue geometry is contained
in a 3D texture reference in order to improve on the memory access patterns (getTissueType()). Some
coherency in photon locations can take advantage of the spatial caching provided by texture memory.
Escape and extended layers boundary conditions are automatically implemented through use of texture
memory. This avoids the need to introduce separate code for tracking photons outside the boundary.
Mirror boundary conditions can be implemented explicitly on the coordinates at the end of each for loop
iteration in photon _step() using mirror(). Boundary conditions are shown in figure El

Optical properties are looked up from a shared memory float array. Sparse randomized global access
patterns are thus constrained to the tissue geometry lookup table.

c c c

il i kel

B B =

© k) S \

c c c

o o o

(%] [} (9]

> > >

S 3 3

5 \ Gy 5 5

o o []

o) Q Qo

>, Q S

& 5 £

i) b =

c . w

g \Stlll tracked

w
tissue_type_tex.addressMode[0, 1, 2] tissue_type_tex.addressMode[0, 1, 2] If outside geometry:
= cudaAddressModeClamp = cudaAddressModeBorder ux := -1*ux

X := (x < 0) ? abs(x) : 2*length_x;

Figure 4: The different boundary conditions and implementations.

3.4 Photon tracking

List of global functions:

e global void photon_reinitialize(): Reinitialize dead/escaped photons according to
photon source.

e global void photon_step(): Track photons according to Monte Carlo rules for a speci-
fied number of steps.

List of host functions:
e void detector(): Record photon distribution according to detector rules.

The functions photon _reinitialize() and photon _step() provide the framework for the main photon
tracking.

The basic interaction between the two was shown in figure [II All photons are tracked for a specific
number of steps before reinitialization to encourage some thread convergence.

x = Xx0; x = rand()*length_x; sincospif(&sintheta, &costheta, rand());
y = rand()*length_y; y = rand()*length_y; r = rand()*rO;
z=0; z=0; X = r*costheta + x0;
ux = 0; ux = 0; y = r¥sintheta + yO0;
uy = 0; uy = 0; z=0;
uz=1; uz =1, ux = 0;
uy = 0;
uz = 1;

Figure 5: Implementation of various simple light sources.

The function photon reinitialize() reinitializes dead or escaped photons once every while. This is
illustrated in figure[6] Before reinitialization, photon properties are copied to a device array. Concurrently
with reinitialization and photon tracking, the photon properties are copied to the host and recorded
using a detector() function. Light sources are implemented directly in photon _reinitialize(). Some
simpler examples are provided in figure [f] Separating reinitialization in a global function simplifies
implementation of more advanced light sources as some recurrent thread divergence is avoided in the
main tracking loop. The number of initialized and finished photons are tracked by an array indexed by
the photons. Each thread increments its own count. These are copied to the host and summed to yield
current photon counts. The host controls the launch of photon _reinitialize() according to whether
the desired photon count has been reached, and stops the simulation when all photons are finished.
Photons are implemented as arrays of fixed size. The arrays are never recreated, and dead or escaped
photons scattered inbetween live photons are reinitialized in place throughout the array.

The photon _step() function implements the tracking of live photons using the usual Monte Carlo steps
[4]. Tt is illustrated in figure Iﬂ

D Still alive . Dead/escaped photons

photons cudaMemcpyDeviceToDevice photons_backup
| HNEENENE

cudaMemcpyDeviceToHost

hostPhotons

Reinitialize -- - -- - -

= oo Instructi |
X,Y,Z } Aecsrding (Instruction replay)

to light

ux, uy,
v source

uz = ...
Set W, s Convert x,y,z to i,j,k

According
to detector
specs

Detector

Update reflectance array
Update transmission array

photons

Figure 6: Overview over the photon reinitialize() function and CUDA setup for avoiding thread
stalling due to atomic operations on reflectance arrays. Photons are copied to a temporary device array
before reinitialization, and copied to the host where the CPU records reflectances concurrently with GPU
tracking of new photons.

4 Output properties

4.1 Reflectance

The number of photons can vary from the specified number of input photons, but it is always guaranteed
that this canonical number of photons are all tracked to the finishing line. The total number of photons
is output to a text file [output] numphotons.dat.

Reflectance is calibrated by dividing all pixels by the total number of tracked photons. To get the
reflectance as it would be obtained by a real detector, multiply by the number of pixels.

References

[1] E. Alerstam, W. C. Y. Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge. Next-generation
acceleration and code optimization for light transport in turbid media using gpus. Biomed. Opt.
Express, 1(2):658-675, 2010.

[2] A. Bjorgan, M. Milanic, and L. L. Randeberg. Ymc3d: Gpu-accelerated 3d monte carlo photon
tracking in tissue inclusions. In submission.

[3] M. Milanic and B. Majaron. Three-dimensional monte carlo model of pulsed-laser treatment of
cutaneous vascular lesions. J. Biomed. Opt., 16(12):128002—-1 — 128002-12, 2011.

[4] L. Wang, S. L. Jacques, and L. Zheng. Mcml monte carlo modeling of light transport in multi-layered
tissues. Comput. Meth. Prog. Bio., 47(2):131 — 146, 1995.

photon_step

Global arrays
Shared memory
tPi
sh_mual], sh_mus[], sh_g[], sh_n[] gwpua[r;)prf\us[] o, nll

Global arrays

Registry

photons
o s B 2 X1, 1, 211, uxt, uyll, uzll, Wi, s[]
blhls=2ote Texture reference
When all photons tissue_type <-1i,j, k tissue_types[num_x][num_yl[num_z]
have been initialized: -
will break out of the
for loop if the photon
is dead or in ambient
medium in order
to encourage thread
convergence

for step in steps:

Get optical properties
(mua = sh_mual[tissue_type], ...) © Major calculation, but unavoidable

@® Major calculation,
cause of divergence/reduction
of peak performance

OEstimate distance to boundary

Intersection

newx, newy, newz

Move to boundary nexti, nextj, nextk <- newx, newy, newz

if stepsize >= distance . . .
next_tissue_type <- newi, newj, newk

n_t = sh_n[next_tissue_type]

Instruction replay if some photons
transmit into refractive media, but
decreased thread divergence e.g.
@ Calculate Fresnel coefficient at the end of the simulation

If nt != ni:

Calculate transmission/reflection cosines

Refl/trans

Only when boundary is not hit

Reduce absorption Global array

i Update absorption array

absorption[num_x*num_y*num_z]

@ Estimate scattering angles

Absorb/scatter

Enabled at compile time

Freeze the coordinates Set new s
if photon is dead or in

ambient medium
Ulpekits o5, 57, Set to scatt_ux, ... or transrefl_ux, ...

according to distance to boundary

Update

Update ux, uy, Uz @
Update i, j, k

Update tissue_type

Update photon arrays
(x[1, yI1, [1, ..., num_photon_finished[], ...)

Figure 7: Overview over the photon step function for tracking photons. All operations are run on all
photons as instruction replay is for the most part unavoidable, and this reduces some thread divergence.
Different operations are done primarily by setting the primary variables (ux, uy, ...) to the appropriate
calculated variable (scatt ux, transrefl ux, ...) through ternary conditionals.

	Introduction
	Usage
	Output
	Input

	Implementation
	Files
	Overview
	Helper functions
	Photon tracking

	Output properties
	Reflectance

